Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 15(17): e202201049, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765252

RESUMO

Syntheses and mechanisms of two dinuclear Co-polypyridyl catalysts for the H2 evolution reaction (HER) were reported and compared to their mononuclear analogue (R1). In both catalysts, two di-(2,2'-bipyridin-6-yl)-methanone units were linked by either 2,2'-bipyridin-6,6'-yl or pyrazin-2,5-yl. Complexation with CoII gave dinuclear compounds bridged by pyrazine (C2) or bipyridine (C1). Photocatalytic HER gave turnover numbers (TONs) of up to 20000 (C2) and 7000 (C1) in water. Electrochemically, C1 was similar to the R1, whereas C2 showed electronic coupling between the two Co centers. The E(CoII/I ) split by 360 mV into two separate waves. Proton reduction in DMF was investigated for R1 with [HNEt3 ](BF4 ) by simulation, foot of the wave analysis, and linear sweep voltammetry (LSV) with in-line detection of H2 . All methods agreed well with an (E)ECEC mechanism and the first protonation being rate limiting (≈104  m-1 s-1 ). The second reduction was more anodic than the first one. pKa values of around 10 and 7.5 were found for the two protonations. LSV analysis with H2 detection for all catalysts and acids with different pKa values [HBF4 , pKa (DMF)≈3.4], intermediate {[HNEt3 ](BF4 ), pKa (DMF)≈9.2} to weak [AcOH, pKa (DMF)≈13.5] confirmed electrochemical H2 production, distinctly dependent on the pKa values. Only HBF4 protonated CoI intermediates. The two metals in the dualcore C2 cooperated with an increase in rate to a competitive 105  m-1 s-1 with [HNEt3 ](BF4 ). The overpotential decreased compared to R1 by 100 mV. Chronoamperometry established high stabilities for all catalysts with TONlim of 100 for R1 and 320 for C1 and C2.


Assuntos
Cobalto , Hidrogênio , Catálise , Cobalto/química , Hidrogênio/química , Prótons , Água/química
2.
Phys Chem Chem Phys ; 23(47): 26729-26736, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842872

RESUMO

Cu diimine complexes present a noble metal free alternative to classical Ru, Re, Ir and Pt based photosensitizers in solution photochemistry, photoelectrochemical or dye-sensitized solar cells. Optimization of these dyes requires understanding of factors governing the key photochemical properties: excited state lifetime and emission quantum yield. The involvement of exciplex formation in the deactivation of the photoexcited state is a key question. We investigate the excited-state structure of [Cu(dmp)2]+ and [Cu(dsbtmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline, dsbtmp = 2,9-di-sec-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using pump-probe X-ray absorption spectroscopy (XAS) and DFT. Features of XAS that distinguish flattened tetrahedral site and 5-coordinated geometry with an additional solvent near Cu(II) center are identified. Pump-probe XAS demonstrates that for both complexes the excited state is 4-coordinated. For [Cu(dmp)2]+ the exciplex is 0.24 eV higher in energy than the flattened triplet state, therefore it can be involved in deactivation pathways as a non-observable state that forms slower than it decays. For [Cu(dsbtmp)2]+ the excited-state structure is characterized by Cu-N distances of 1.98 and 2.07 Å and minor distortions, leading to a 3 orders of magnitude longer excited-state lifetime.

3.
Chimia (Aarau) ; 75(3): 180-187, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766200

RESUMO

The reductive part of artificial photosynthesis, the reduction of protons into H2, is a two electron two proton process. It corresponds basically to the reactions occurring in natural photosystem I. We show in this review a selection of involved processes and components which are mandatory for making this light-driven reaction possible at all. The design and the performances of the water reduction catalysts is a main focus together with the question about electron relays or sacrificial electron donors. It is shown how an original catalyst is developed into better ones and what it needs to move from purely academic homogeneous processes to heterogeneous systems. The importance of detailed mechanistic knowledge obtained from kinetic data is emphasized.

4.
Chem Commun (Camb) ; 56(73): 10658-10661, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32785303

RESUMO

Cycloruthenation is a well known process in organometallic ruthenium chemistry. In this work, we report unprecedented cycloruthenated rhenium bis-arene compounds with planar chirality. In a two-step process, the reaction of acetyl-pyridine with [Re(η6-C6H6)2]+ introduced a pyridinyl-methanol ligand at one of the arene rings. Coordination of [Ru(CO)2Cl2] led to cycloruthenation, and the products were obtained as two diastereomeric pairs of enantiomers. Under basic pH conditions, the two pairs of enantiomers undergo spontaneous and reversible dimerization. The cycloruthenated monomers were fully characterized, and the dimerization process was studied by NMR, IR spectroscopy, and DFT calculations.

5.
Chem Commun (Camb) ; 56(70): 10179-10182, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748920

RESUMO

Ni/CoOx sites were supported on an around 2 nm-TiOx modified hematite photoanode for water oxidation. TiOx demonstrates insignificant hole accumulation and a catalytically inactive surface that serves as an ideal platform. We reveal that the NiOx favors the extraction of holes from the TiOx surface, which are efficiently transferred to active CoOx for water oxidation.

6.
Chemistry ; 26(48): 10992-11006, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32700815

RESUMO

Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.


Assuntos
2,2'-Dipiridil/química , Monóxido de Carbono/química , Pró-Fármacos/química , Pró-Fármacos/efeitos da radiação , Rutênio/química , Linhagem Celular Tumoral , Células HEK293 , Humanos
7.
Dalton Trans ; 49(16): 5250-5256, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32242190

RESUMO

Ferrocenes are versatile ligand scaffolds, complexes of which have found numerous applications in catalysis. Structurally similar but of higher redox stabilites are sandwich complexes of the [Re(η6-arene)2]+ type. We report herein routes for conjugating potential ligands to a single or to both arenes in this scaffold. Since the arene rings can freely rotate, the [Re(η6-arene)2]+ has a high degree of structural flexibility. Polypyridyl ligands were successfully introduced. The coordination of Co(ii) to such a model tetrapyridyl-Re(i)-bis-benzene complex produced a bimetallic Re(i)-Co(ii) complex. To show the stability of the resulting architecture, a selected complex was subjected to photocatalytic reactions. It showed good activity in proton reduction over a long time and did not decompose, corroborating its extraordinary stability even under light irradiation. Its activity compares well with the parent catalyst in turn over numbers and frequencies. The supply of electrons limits catalytic turnover frequency at concentrations below ∼10 µM. We also show that other ligands can be introduced along these strategies. The great diversity offered by [Re(η6-arene)2]+ sandwich complexes from a synthetic point allows this concept to be extended to other catalytic processes, comparable to ferrocenes.

8.
Chimia (Aarau) ; 73(11): 906-912, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753071

RESUMO

Proton reduction by [CoII(BPyPy2COH)(OH2)2]2+ (BPyPy2COH = [2,2'-bipyridin]-6-yl-di[pyridin-2-yl]methanol) proceeds through two distinct, pH-dependent pathways involving proton-coupled electron transfer (PCET), reduction and protonation steps. In this account we give an overview of the key mechanistic aspects in aqueous solution from pH 3 to 10, based on electrochemical data, time-resolved spectroscopy and ab initio molecular dynamics simulations of the key catalytic intermediates. In the acidic pH branch, a PCET to give a CoIII hydride is followed by a reduction and a protonation step, to close the catalytic cycle. At elevated pH, a reduction to CoI is observed, followed by a PCET to a CoII hydride, and the catalytic cycle is closed by a slow protonation step. In our simulation, both CoI and CoII-H feature a strong interaction with the surrounding solvent via hydrogen bonding, which is expected to foster the following catalytic step.

9.
J Phys Condens Matter ; 30(42): 424002, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30160653

RESUMO

Instability of ultrathin surface oxides on alloys under environmental conditions can limit the opportunities for applications of these systems when the thickness control of the insulating oxide film is crucial for device performance. A procedure is developed to directly deposit self-assembled monolayers (SAM) from solvent onto substrates prepared under ultra-high vacuum conditions without exposure to air. As an example, rhenium photosensitizers functionalized with carboxyl linker groups are attached to ultrathin alumina grown on NiAl(1 1 0). The thickness change of the oxide layer during the SAM deposition is quantified by x-ray photoelectron spectroscopy and can be drastically reduced to one atomic layer. The SAM acts as a capping layer, stabilizing the oxide thin film under environmental conditions. Ultraviolet photoelectron spectroscopy elucidates the band alignment in the resulting heterostructure. The method for molecule attachment presented in this manuscript can be extended to a broad class of molecules vulnerable to pyrolysis upon evaporation and presents an elegant method for attaching molecular layers on solid substrates that are sensitive to air.

10.
ChemSusChem ; 11(18): 3087-3091, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30009517

RESUMO

Cobalt polypyridyls are highly efficient water-stable molecular catalysts for hydrogen evolution. The catalytic mechanism explaining their activity is under debate and the main question is the nature of the involvement of pyridyls in the proton transfer: the pentapyridyl ligand, acting as a pentadentate ligand, can provide stability to the catalyst or one of the pyridines can be involved in the proton transfer. Time-resolved Co K-edge X-ray absorption spectroscopy in the microsecond time range indicates that, for the [CoII (aPPy)] catalyst (aPPy=di([2,2'-bipyridin]-6-yl)(pyridin-2-yl)methanol), the pendant pyridine dissociates from the cobalt in the intermediate CoI state. This opens the possibility for pyridinium to act as an intramolecular proton donor. In the resting state, the catalyst returns to the original six-coordinate high-spin CoII state with a pentapyridyl and one water molecule coordinating to the metal center. Such a bifunctional role of the polypyridyl ligands can be exploited during further optimization of the catalyst.

11.
Nano Lett ; 18(2): 1205-1212, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314849

RESUMO

Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

12.
Inorg Chem ; 57(3): 1651-1655, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29368926

RESUMO

Cobalt complexes are well-known catalysts for photocatalytic proton reduction in water. Macrocyclic tetrapyridyl ligands (pyrphyrins) and their CoII complexes emerged in this context as a highly efficient class of H2 evolution catalysts. On the basis of this framework, a new macrocyclic CoII complex consisting of two keto-bridged bipyridyl units (Co diketo-pyrphyrin) is presented. The complex is synthesized along a convenient route, is well soluble in water, and shows high activity as a water reduction catalyst (WRC). In an aqueous system containing [Ru(bpy)3]Cl2 as a photosensitizer and NaAscO as a sacrificial electron donor, turnover numbers (TONs) of 2500 H2/Co were achieved. Catalysis is terminated by a limited electron supply and decomposition of the photosensitizer but not of the WRC, highlighting the distinct stability of Co diketo-pyrphyrin.

13.
J Phys Chem Lett ; 8(24): 6193-6198, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29202241

RESUMO

Surface-adsorbed macrocycles exhibit a number of interesting physical and chemical properties; many of them are determined by their transition-metal centers. The hierarchical exchange of the central metal atom in such surface-adsorbed complexes is demonstrated, specifically in the porphyrin-like macrocycle pyrphyrin adsorbed on Cu(111). Using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we show that Cu as central metal atom is easily exchanged with Ni or Fe atoms supplied in trace amounts to the surface. Atom exchange of Ni centers with Fe atoms also occurs, with moderate yield. These results allow ranking the stability of the surface-adsorbed Cu, Ni, and Fe complexes. The fact that the atom exchange occurs at 423 K shows that surface-adsorbed macrocycles can be surprisingly easily transformed.

14.
Nat Commun ; 8(1): 1341, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116238

RESUMO

Atomically dispersed supported catalysts can maximize atom efficiency and minimize cost. In spite of much progress in gas-phase catalysis, applying such catalysts in the field of renewable energy coupled with electrochemistry remains a challenge due to their limited durability in electrolyte. Here, we report a robust and atomically dispersed hybrid catalyst formed in situ on a hematite semiconductor support during photoelectrochemical oxygen evolution by electrostatic adsorption of soluble monomeric [Ir(OH)6]2- coupled to positively charged NiOx sites. The alkali-stable [Ir(OH)6]2- features synergistically enhanced activity toward water oxidation through NiOx that acts as a "movable bridge" of charge transfer from the hematite surface to the single iridium center. This hybrid catalyst sustains high performance and stability in alkaline electrolyte for >80 h of operation. Our findings provide a promising path for soluble catalysts that are weakly and reversibly bound to semiconductor-supported hole-accumulation inorganic materials under catalytic reaction conditions as hybrid active sites for photoelectrocatalysis.

15.
Nano Lett ; 17(11): 6620-6625, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972377

RESUMO

We present a hetero junction based on macrocyclic hydrogen evolution catalysts (HEC) physisorbed on a single crystalline Cu2O(111) surface. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) provides the spatial resolution of the band bending within the first nanometer of the subsurface region. Oxygen vacancies on the Cu2O(111) surface cause a downward band bending which is conserved upon adsorption of HEC layers of various thicknesses. This allows photoexcited electrons to be directed toward the surface where they can be made available for the reduction of protons by the HEC. Furthermore, Poisson's equation relates more subtle changes in the measured ARXPS spectra to the local charge density profile within the first 7 Å away from the surface and with atomic resolution. All observations are consistent with a polarization of the molecular layer in response to the electrical field at the oxide surface, which should be a general phenomenon at such organic-oxide heterointerfaces.

16.
ChemSusChem ; 10(22): 4570-4580, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29052339

RESUMO

A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl-bipyridyl complex [CoII Br(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII -H, is found upon reduction of CoII , in line with a pKa (CoIII -H) of approximately 7.25. Subsequent reduction (-0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa (CoIII -H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.


Assuntos
Cobalto/química , Hidrogênio/química , Piridinas/química , Água/química , 2,2'-Dipiridil , Catálise , Complexos de Coordenação/química , Relação Estrutura-Atividade
17.
Nanoscale ; 9(25): 8756-8763, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28616947

RESUMO

Metal complexes of the tetradentate bipyridine based macrocycle pyrphyrin (Pyr) have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on stoichiometric TiO2(110) is investigated in ultrahigh vacuum by means of scanning tunneling microscopy, photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. In a joint experimental and computational effort, the local adsorption geometry at low coverage, the long-range molecular ordering at higher coverage and the electronic structure have been determined for both the bare ligand and the cobalt-metalated Pyr molecule on TiO2. The energy level alignment of CoPyr/TiO2 supports electron injection into TiO2 upon photoexcitation of the CoPyr complex and thus renders it a potential sensitizer dye. Importantly, Co-incorporation is found to stabilize the Pyr molecule against photo-induced degradation, while the bare ligand is decomposed rapidly under continuous UV-irradiation. This interesting phenomenon is discussed in terms of additional de-excitation channels for electronically highly excited molecular states.

18.
Nanoscale ; 8(15): 7958-68, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27006307

RESUMO

The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.

19.
Chemphyschem ; 17(9): 1321-8, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26752324

RESUMO

We explore the potential of various hydroquinone/quinone redox couples as electron relays in a homogenous water reduction system between a Re-based photosensitizer and a sacrificial electron donor [tris-(2-carboxyethyl)-phosphine, TCEP]. By using transient IR spectroscopy, flash photolysis as well as stopped-flow techniques covering timescales from picoseconds to 100 ms, we determine quenching rates and cage escape yields, the kinetics of the follow-up chemistry of the semiquinone, the recombination rates, as well as the re-reduction rates by TCEP. The overall quantum yield of hydrogen production is low, and we show that the limiting factors are the small cage escape yields and, more importantly, the slow regeneration rate by TCEP in comparison to the undesired charge recombination with the reduced water reduction catalyst.


Assuntos
Fotossíntese , Quinonas/química , Elétrons , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
20.
J Phys Chem B ; 119(43): 13698-706, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26230135

RESUMO

A new, molecular system for the light-driven production of hydrogen in aqueous solution was developed by combining a water-soluble tin porphyrin ([Sn(IV)Cl2TPPC], A) acting as photosensitizer with a cobalt-based proton-reduction catalyst ([Co(III)Cl(dmgH)2(py)], C). Under visible light illumination and with triethanolamine (TEOA) as electron source, the system evolves H2 for hours and is clearly catalytic in both dye and catalyst. A detailed analysis of the relevant redox potentials in combination with time-resolved spectroscopy resulted in the development of a Z-scheme type model for the flow of electrons in this system. Key intermediates of the proposed mechanism for the pathway leading to H2 are the porphyrin dye's highly oxidizing singlet excited state (1)A* (E ∼ +1.3 V vs NHE), its strongly reducing isobacteriochlorin analogue (E ∼ +0.95 V), and the Co(I) form of C (E ∼ -0.8 V), acting as catalyst for H2 formation. Among other results, the suggested reaction sequence is supported by the detection of a shortened excited-state lifetime for singlet (1)A* (τ ∼ 1.75 ns) in the presence of TEOA and the ultraviolet-visible detection of the Sn(IV) isobacteriochlorin intermediate at λ = 610 nm. Thus, a molecular, conceptually biomimetic, and precious-metal-free reaction chain was found which photocatalytically generates H2 in a 100% aqueous system from an electron donor with a high oxidation potential (E(TEOA) ∼ +1.1 V). On the other hand, at identical conditions, this photoreaction chain yields H2 markedly slower than a system using the photosensitizer [Re(I)(CO)3(bpy) (py)](+), probably due to the much longer excited-state lifetime (τ ∼ 120 ns) of the rhenium dye and better electron-transfer rates caused by its simple single-electron photoreduction chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...